

Metabolomic Profiling of Corn and Rice Extracts Using a Benchtop GC-TOFMS

LECO Corporation; Saint Joseph, Michigan USA

Key Words: GC-TOFMS, Corn, Rice, Derivatization, High Throughput, Quantitation, Metabolomics, Amino Acids, Deconvolution

1. Introduction

Corn and rice are some of the most important crops worldwide for food, feed, and energy. ^{1,2} Metabolomic profiling is one of the most effective approaches for studying the general characteristics of rice and corn, their resistance to insects, and their tolerance to stressful environmental conditions. ³ Metabolomics can be used to study crop diversity and disease resistance. These studies often lead to an improvement in quality, yield, and nutritional value. ^{4,5} More specifically, food quality traits such as fragrance, taste, appearance, shelf-life, and nutritional content can be assessed by determining their biochemical content. ⁶ In this study, we took advantage of a new benchtop GC-TOFMS for metabolomics profiling of corn and rice extracts. Instrument parameters were optimized for speed and detection of a wide array of metabolites after samples were derivatized via silylation. Powerful software tools were used to acquire, peak find, and quickly annotate the rich, high quality spectral data produced by LECO Corporation's new Pegasus [®] BT mass spectrometer.

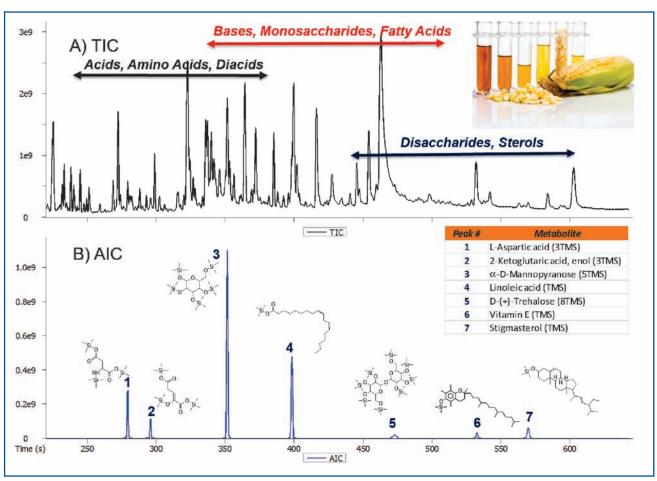


Figure 1. Total Ion Chromatogram (A) and Analytical Ion Chromatogram (B) showing the ability to selectively determine analytes of interest in a complex corn leaf extract.

2. Experimental

a) Extraction

 $400\,\mu\text{L}$ of 4:1 methanol/water was added to 25 mg of freeze-dried plant material. The heterogeneous mixture was vortexed for 5 minutes, heated at 70°C for 15 minutes, and centrifuged for 5 minutes at 12,000 rpm. Ribitol was added as an internal standard ($10\,\mu\text{L}$; $2000\,\mu\text{g/mL}$ in water) to $400\,\mu\text{L}$ of supernatant. The resulting mixture was dried under vacuum at 60°C using a Speed Vac.

b) Derivatization

Dry samples were derivatized by adding $100 \,\mu\text{L}$ of MSTFA and heating at 60°C for 1 hour.

Table 1. GC-TOFMS (Pegasus BT) Conditions

Gas Chromatograph	Agilent 7890 with GERSTEL MPS2 Autosampler							
Injection	1 μL, split 20:1 @ 270°C							
Carrier Gas	He @ 0.80 mL/min , Constant Flow							
Column	Rxi-5ms, 20 m x 0.18 mm i.d. x 0.18 μ m coating (Restek, Bellefonte, PA, USA)							
Oven Program	60°C (0.5 min), to 320°C @ 36°C/min (3 min)							
Transfer Line	300°C							
Mass Spectrometer	LECO Pegasus BT							
Ion Source Temperature	250°C							
Mass Range	45-600 m/z							
Acquisition Rate	20 spectra/s							

3. Results and Discussion

The Pegasus BT is a benchtop instrument with the expected characteristics of a state-of-the-art GC-TOFMS (i.e., speed, robustness, chromatographic resolution, etc.), but with improved sensitivity (parts-per-trillion) and extended linear dynamic range (10^5). This is clearly illustrated for a set of amino acids in a calibration range from 0.01 to 50 pMol/ μ L (Table 2). Linearity for calibration curves was excellent as evident from the correlation coefficients for methionine, phenyl alanine aspartic acid, and lysine which ranged from 0.996 to 0.998 (Figure 2). An expansion of the lower portion of the curves for branched amino acids Leucine and Isoleucine demonstrates that linearity is maintained throughout the calibration range (Figure 3; r = 0.999).

Table 2. Amino Acid Standard Concentrations are shown in both pMol/ μ L (0.01 to 50 pMol/ μ L) and pg on column after a 1 μ L injection, split 20:1.

Amino Acid pg On Column after a 1uL Injection/Split 20:1										
Ala	223	111	45	22	4.5	2.2	0.45	0.22	0.045	
Arg	436	218	87	44	8.7	4.4	0.87	0.44	0.087	
Asp	333	166	67	33	6.7	3.3	0.67	0.33	0.067	
Cys	303	151	61	30	6.1	3.0	0.61	0.30	0.061	
Glu	368	184	74	37	7.4	3.7	0.74	0.37	0.074	
Gly	188	94	38	19	3.8	1.9	0.38	0.19	0.038	
His	388	194	78	39	7.8	3.9	0.78	0.39	0.078	
lle	328	164	66	33	6.6	3.3	0.66	0.33	0.066	
Leu	328	164	66	33	6.6	3.3	0.66	0.33	0.066	
Lys	365	183	73	37	7.3	3.7	0.73	0.37	0.073	
Met	373	187	75	37	7.5	3.7	0.75	0.37	0.075	
Phe	413	206	83	41	8.3	4.1	0.83	0.41	0.083	
Pro	288	144	58	29	5.8	2.9	0.58	0.29	0.058	
Ser	263	131	53	26	5.3	2.6	0.53	0.26	0.053	
Thr	298	149	60	30	6.0	3.0	0.60	0.30	0.060	
Tyr	453	226	91	45	9.1	4.5	0.91	0.45	0.091	
Val	293	146	59	29	5.9	2.9	0.59	0.29	0.059	
Conc. pMol/µL	50	25	10	5	1	0.5	0.1	0.05	0.01	

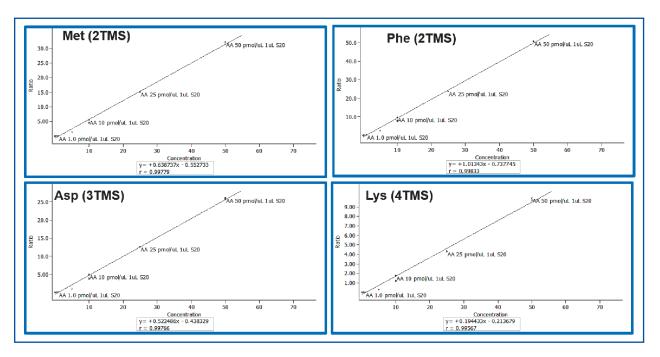


Figure 2. Calibration Curves for Methionine, Phenyl Alanine, Aspartic Acid, and Lysine (0.01 to 50 pMol/µL).

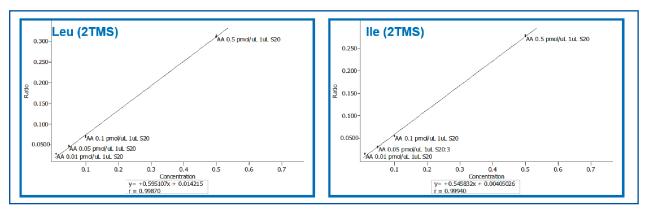


Figure 3. Expansion of Calibration Curves for Leucine and Isoleucine (0.01 to 0.5 pMol/μL).

The combination of LECO's high-performance hardware and next generation ChromaTOF® brand software (version 5.0) resulted in an increased coverage of annotated metabolites in corn and rice samples. Comprehensive metabolomics data was acquired in just over 10 minutes. Metabolites were confidently identified via automated, comprehensive data processing which involved peak find, spectral similarity searches against large well-established databases, and by leveraging retention index values. A set of forty-two representative metabolites detected and annotated in corn extract are listed in Table 3. These compounds include amino acids, acids, diacids, monosaccharides, disaccharides, terpenes, terpenoids, and sterols. The metabolites were compared against NIST and Wiley databases and found to have an average spectral similarity score of 870/1000. The quality and richness of data produced by the Pegasus BT is nicely illustrated by the spectral similarity comparisons of Peak True (Deconvoluted) and NIST database mass spectra for (E)-aconitic acid and palmitic acid, which were 916 and 943/1000, respectively (Figure 4).

Peak #	Name	Formula		Retention Index	Area	Similarity	Peak #	Name	Formula	R.T. (s)	Retention Index	Area .	Similarity
1	Isoleucine 2TMS	C12H29NO2Si2	230	1291	395477933	814	22	Glucose 5TMS	C21H52O6SI5	365	1999	2193633580	912
2	Niacin TMS	C ₉ H ₁₃ NO ₂ Si	230	1294	108299128	870	23	Palmitic Acid TMS	$C_{19}H_{40}O_2Si$	372	2050	2740753179	943
3	Malonic Acid 2TMS	C ₉ H ₂₀ O ₄ Si ₂	231	1298	1436217142	876	24	D-Gluconic acid 6TMS	C24H50O7SI6	374	2057	285082038	828
4	Succinic 2TMS	C ₁₀ H ₂₂ O ₄ Si ₂	233	1306	2251723198	854	25	Ferulic Acid 2TMS	C ₁₆ H ₂₆ O ₄ Si ₂	382	2110	351778560	853
5	Glyceric Acid 3TMS	C ₁₂ H ₃₀ O ₄ SI ₃	238	1328	1516160071	929	26	Myo-Inositol 6TMS	C ₂₄ H ₅₀ O ₅ SI ₆	385	2133	1907082179	824
6	Itaconic Acid 2TMS	$C_{11}H_{22}O_4Si_2$	240	1340	2239319374	918	27	Caffeic Acid 3TMS	C ₁₈ H ₅₂ O ₄ Si ₅	388	2152	1090954337	885
7	Methylmaleic Acid 2TMS	C11 H22 O4SI2	242	1351	992776815	805	28	Phytol TMS	C23H48OSI	393	2181	1688201136	913
8	Serine 3TMS	C12H31NO3Si3	244	1361	1484484365	909	29	Stearic Acid TMS	C21H44O2Si	402	2246	970175017	869
9	(E)-Erythrono-1,4-lactone 2TMS	C ₁₀ H ₂₂ O ₄ Si ₂	249	1384	1013322110	937	30	Tryptophan 3TMS	C ₂₀ H ₃₆ N ₂ O ₂ Si ₃	404	2258	336310682	811
10	Threonine 3TMS	C13H33NO3Si3	251	1392	2342030066	905	31	2-O-Glycerol galactopyranoside 6TM	C ₂₇ H ₅₆ O ₈ Si ₆	416	2347	3540461506	906
11	Methylmaleic Acid 2TMS	C11H22O4SI2	252	1396	857642597	865	32	Glucose 6-Phosphate 6TMS	$C_{24}H_{61}O_9PSI_6$	426	2414	486549797	803
12	Malic Acid 3TMS	$C_{13}H_{30}O_{5}Si_{3}$	272	1496	3562505366	874	33	Myo-Inositol Phosphate 7TMS7	$C_{27}H_{69}O_9PSI_7$	434	2475	525744735	902
13	Threonic Acid 4TMS	C ₁₆ H ₄₀ O ₅ Si ₄	288	1572	2221809977	947	34	Adenosine 5'-Phosphate 5TMS	C25H54N5O7PSi5	520	3132	66380886	776
14	2-Ketoglutaric Acid 3TMS	C14H30O5Si3	296	1610	1425602596	871	35	α-Tocopherol TMS	$C_{32}H_{58}O_2SI$	533	3228	575984929	903
15	Pyrogallol 3TMS	C ₁₅ H ₃₀ O ₃ Si ₃	297	1615	70015660	804	36	3-O-Ferul oylquinic Acid 5TMS	C32H50O9Si5	540	3279	683024379	820
16	Glutamic Acid 3TMS	C14H33NO4SI3	299	1627	1737232874	853	37	Chlorogenic Acid 6TMS	C ₅₄ H ₅₆ O ₉ SI ₆	543	3298	3292317512	779
17	L-Rhamnose 4TMS	C18H44O5Si4	302	1644	1956202287	830	38	Mannobiose 8TMS	C36H86O11Si8	567	3479	2142914778	850
18	(Z)-Aconitic Acid 3TMS	C ₁₅ H ₃₀ O ₆ SI ₃	322	1754	5787376222	923	39	Stigmasterol TMs	C ₃₂ H ₅₆ OSI	570	3501	482314345	843
19	Neophytadiene	C ₂₀ H ₃₈	339	1846	330374033	931	40	3-hydroxystigmast-5-ene TMS	C ₃₂ H ₅₈ OSi	585	3608	1079446063	918
20	Glucopyranose 5TMS	C21H52O6SI5	352	1923	3685576368	904	41	α-Amyrin TMS	C ₃₃ H ₅₈ OSI	594	3678	305914381	888
21	Mannose 5TMS	C21H52O6Si5	352	1923	3164023678	810	42	Sucrose 8TMS	C ₅₆ H ₈₆ O ₁₁ Si ₈	600	3718	1779889280	885

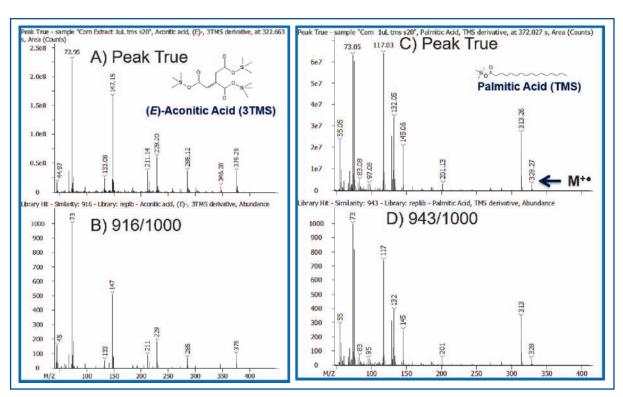


Figure 4. Comparison of Peak True (Deconvoluted-Top) vs. Library Spectra (Bottom) for (E)-Aconitic Acid and Palmitic Acid.

An extra level of confidence in metabolite identification was achieved by combining database search results with retention index (RI) values as shown for serine and phytol in Figure 5. The similarity scores for serine and phytol were 966 and 945/1000, and the retention index values were 1361 (Reference value = 1369) and 2179 (Reference value = 2181) respectively.

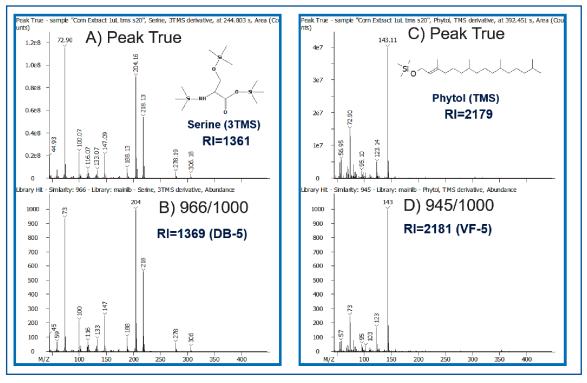


Figure 5. Comparison of Peak True (Deconvoluted-Top) vs. Library Spectra (Bottom) for Serine and Phytol. Calculated RI values are also shown.

A very exciting feature of *ChromaTOF* 5.0 is the ability to process comprehensive data retrospectively in a targeted manner. Target Analyte Finding (TAF) is ideal for trace analysis, quantitative analysis, and processing large datasets. TAF significantly reduces processing times by leveraging retention times, fragment and/or molecular ions, and mass tolerances (Figure 6). A total of 22 metabolites were targeted in the corn and rice data files (Figures 7 and 8). TAF

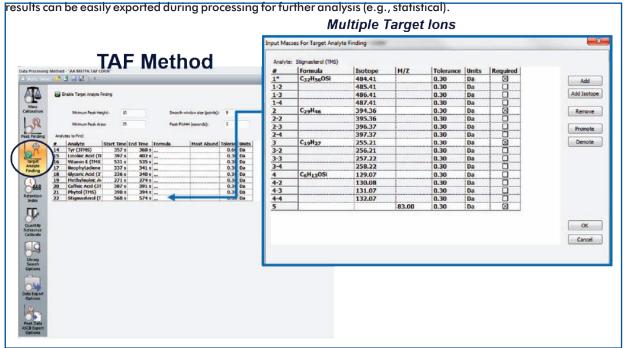


Figure 6. ChromaTOF 5.0 Target Analyte Finding Processing (TAF) Method.

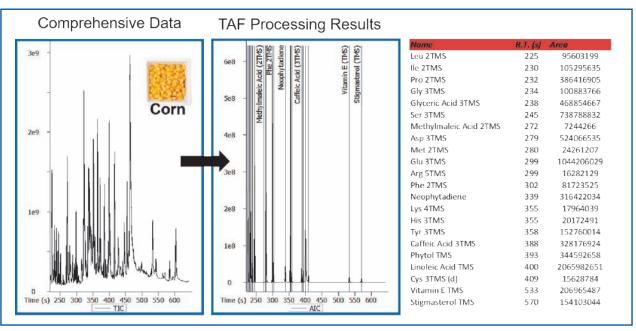


Figure 7. TAF Processing Results - Corn Extract.

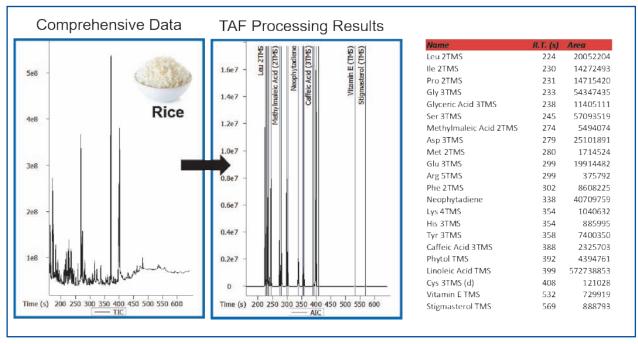


Figure 8. TAF Processing Results - Rice Extract.

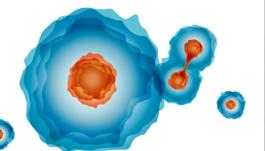
LECO's Pegasus BT is a powerful and robust benchtop mass spectrometer with excellent sensitivity and extended linear dynamic range. The combination of the Peaasus BT instrument and next generation ChromaTOF brand software resulted in the production of high-quality data that could be processed rapidly using Peak Find and/or retrospectively with Target Analyte Finding. The Pegasus BT is an indispensable tool for quick, effective, and routine analysis of complex biological samples.

5. References

- ¹M. Chen, R.S.P. Rao, Y. Zhang, C. Zhong and J.J. Thelen, The Crop Journal, 2016, 4, 177-187.
- ²M. Kusano, Z. Yang, Y. Okazaki, R. Nakabayashi, A. Fukushima and K. Saito, Molecular Plant, **2015**, 8, 58-67.
- ³Y. Okazaki and K. Saito, Plant Biotechnol. Rep., **2012**, 6, 1-15.
- ⁴C. Simo, C. Ibanez, A. Valdes, A. Cifuentes and V. Garcia-Canas, Int. J. Mol. Sci., 2014, 15, 18941-18966.
- ⁵G. Astarita nad J. Langridge, Journal of Nutrigenetics and Nutrigenomics, **2013**, 6, 181-200.
- ⁶J.W. Allwood, A. Erban, S. De Koning, W.B. Dunn, A. Luedemann, A. Lommen, L. Kay, R. Loscher, J. Kopka, and R. Goodacre, Metabolomics, 2009, 5, 479-496.

121374, г. Москва, Кутузовский пр., д. 88 Тел.: +7 (499) 705-50-50 fsd@helicon.ru

8 800 770 71 21 www.helicon.ru


филиалы:

ПРЕЛСТАВИТЕЛЬСТВО В СИБИРСКОМ РЕГИОНЕ: 630090 г. Новосибирск,

ул. Инженерная, д. 28 Тел.: +7 (383) 207-84-85 novosibirsk@helicon.ru

ПРЕДСТАВИТЕЛЬСТВО В СЕВЕРО-ЗАПАДНОМ РЕГИОНЕ:

195220 г. Санкт-Петербург, ул. Гжатская, д. 22, корп. 1 Тел.: +7 (812) 244-85-52

ПРЕДСТАВИТЕЛЬСТВО В ПРИВОДЖСКОМ РЕГИОНЕ:

420021 г. Казань ул. Татарстан, д. 14/59, оф. 201 Тел.: +7 (843) 202-33-37 volga@helicon.ru

ПРЕДСТАВИТЕЛЬСТВО В ЮЖНОМ РЕГИОНЕ:

344116 г. Ростов-на-Лону ул. 2-ая Володарская, д. 76/23а Тел.: +7 (863) 294-87-66 rostov@helicon.ru